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Abstract
The phase space representation for a q-deformed model of the quantum
harmonic oscillator is constructed. We have found explicit expressions for
both the Wigner and Husimi distribution functions for the stationary states of
the q-oscillator model under consideration. The Wigner function is expressed
as a basic hypergeometric series, related to the Al-Salam-Chihara polynomials.
It is shown that, in the limit case h → 0 (q → 1), both the Wigner and Husimi
distribution functions reduce correctly to their well-known non-relativistic
analogues. Surprisingly, examination of both distribution functions in the
q-deformed model shows that, when q � 1, their behaviour in the phase
space is similar to the ground state of the ordinary quantum oscillator, but
with a displacement towards negative values of the momentum. We have
also computed the mean values of the position and momentum using the
Wigner function. Unlike the ordinary case, the mean value of the momentum
is not zero and it depends on q and n. The ground-state-like behaviour of the
distribution functions for excited states in the q-deformed model opens quite
new perspectives for further experimental measurements of quantum systems
in the phase space.

PACS numbers: 03.65.−w, 03.65.Ta, 42.50.Dv, 02.30.Gp

1. Introduction

The harmonic oscillator concept occupies a central position in science and engineering due to
its simplicity and exact solubility in both classical and quantum descriptions. Today it appears
in mechanics, electromagnetism, electronics, optics, acoustics, astronomy, nuclear theory, to
name just a few [1].
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In the quantum approach, the harmonic oscillator is one of the exactly solvable problems
studied in detail due to its considerable physical interest and applicability [2]. To examine the
applicability of a system modelled by a harmonic oscillator, one wishes to compare theoretical
results about position and momentum with measurements. In practical quantum applications
however, one is faced with measurability problems of the quantum system states due to the
uncertainty principle of quantum physics. For this reason, it is common to work with area
elements in phase space, whose size is not smaller than Planck’s constant, and obtain an
expression for the joint probability distribution function of momentum and position. Then,
having a certain method for the measurement of this quantity, the gathered results will provide
a complete characterization of the quantum system under consideration and allow the use of
more transparent classical language to examine its properties.

The Wigner distribution function is the main theoretical tool to construct the phase space
of a quantum system. It is the closest quantum mechanical analogue of the classical probability
distribution over the phase space, i.e. limh̄→0 W(p, x) = ρ(p, x). This distribution function
was first proposed by Wigner to study the quantum correction for a thermodynamic equilibrium
[3]. Quantum harmonic oscillators are one of first systems where analytical expressions for
the Wigner distribution function were calculated, for stationary states as well as for states
of the thermodynamic equilibrium. These expressions are important due to experimental
measurements done in the past two decades [4, 5].

For example, the novel experimental method of optical homodyne tomography allows
the measurement of the Wigner function for squeezed, vacuum, one- and two-photon states
[4, 6, 7]. Note also experiments where measurements of the Wigner function of Fock states
were performed on vibrational states of a trapped Be+ ion [8]. In other words, advanced
measurement techniques for the Wigner function changed its status from an ‘only theoretically
computable expression’ to that of an ‘also directly measurable quantity’.

All of this, however, is still not applicable to generalizations of the quantum harmonic
oscillator, in particular the so-called q-deformed harmonic oscillator. The origin of q-deformed
oscillators can be traced back to the work of Iwata [9], who generalized the Heisenberg
commutation relation and solved the relevant eigenvalue problem. Later on, in the 1970s
q-deformed generalizations of the harmonic oscillator were quite popular and since the end
of the 1980s they are back into fashion. It is interesting to observe that q-deformed harmonic
oscillators models are also simple and exactly solvable. Moreover, the appearance of an extra
parameter q gives rise to additional application opportunities compared to the non-relativistic
harmonic oscillator. Deformed oscillators have found applications in the theory of quons
[10], statistical physics [11], generalized thermodynamics [12] and in models describing a
small violation of the Pauli exclusion principle [13], to name a few. However, in spite of
these applications, many aspects of the q-oscillator model have not been developed. One
of the main reasons restricting its wide applications is the absence of an exact expression in
terms of phase space. In this context, it is necessary to note the work in [14–16], where the
possibility of obtaining the Wigner function associated with the q-Heisenberg commutation
relation is discussed. However, in spite of attempts to derive an analytical expression of the
Wigner function for the q-deformed harmonic oscillator models, up till now this goal was not
achieved. The main problem is related to difficulties for the right definition of the momentum
and position operators and to transformation formulae between them in the q-case.

If one imagines modern quantum physics as a puzzle, then due to the absence of an
explicit description of q-deformed harmonic oscillators in phase space, some pieces of the
puzzle are missing. In this paper, we examine some missing pieces of this puzzle and present
explicit expressions for the Wigner and Husimi distribution functions for the stationary states
of a q-deformed harmonic oscillator model. We also analyse these expressions for various
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values of the parameter q and prove that they reduce to the well-known expressions for the
non-relativistic harmonic oscillator in the limit q → 1.

Our paper is structured as follows: in section 2, we provide basic information about
the definition of the Wigner function and its Gauss smoothed analogue. We present their
explicit expressions for the stationary states of the non-relativistic linear harmonic oscillator.
Section 3 is devoted to a model of the q-deformed oscillator, whose wavefunctions are
expressed in coordinate and momentum spaces by Rogers–Szegö and Stieltjes–Wigert
polynomials, respectively. We present explicit expressions for the Wigner and Husimi
distribution functions for the stationary states of the q-deformed oscillator in section 4.
Discussions and conclusions are given in sections 5 and 6.

To end this introduction, we collect some common notation and known results for
q-series. Many of the expressions encountered in this paper will be expressible in terms
of basic hypergeometric series (q-series), for which we use the standard notation of Gasper
and Rahman [17]. The q-shifted factorial is defined as

(a; q)0 = 1 and (a; q)n =
n−1∏
k=0

(1 − aqk), for n = 1, 2, . . . ,∞,

and (a1, . . . , am; q)n = (a1; q)n · · · (am; q)n. A basic hypergeometric series is defined as

rφs

(
a1, a2, . . . , ar

b1, b2, . . . , bs

; q, z

)
=

∞∑
k=0

(a1, a2, . . . , ar ; q)k

(q, b1, b2, . . . , bs; q)k

(
(−1)kq(k

2)
)1+s−r

zk.

In most cases, we will have that r = s + 1. Moreover, a basic hypergeometric series
is terminating if one of the parameters aj (j = 1, . . . , r) equals q−n with n a nonnegative
integer. The single most important summation formula for basic hypergeometric series is the
q-binomial theorem:

1ϕ0

(
a

–
; q, z

)
=

∞∑
k=0

(a; q)k

(q; q)k
zk = (az; q)∞

(z; q)∞
, |z| < 1, |q| < 1. (1.1)

In the terminating case, i.e. when a = q−n, this reduces to

1ϕ0

(
q−n

– ; q, z

)
= (q−nz; q)∞

(z; q)∞
= (q−nz; q)n,

and there are no longer any convergence conditions.
It will also prove convenient to have a notation for the q-binomial coefficient:[

n

k

]
q

= (q; q)n

(q; q)k(q; q)n−k

and for the q-numbers:

[a]q = 1 − qa

1 − q
, q �= 1.

2. The Wigner distribution function

The Wigner function for stationary states of a quantum system can be obtained from its
wavefunctions ψn(x) or ψ̃n(p) (in the position or momentum representation) by the well-
known definition [18]

Wn(p, x) = 1

2πh̄

∫ ∞

−∞
ψ∗

n

(
x − 1

2
x ′

)
ψn

(
x +

1

2
x ′

)
e−ipx ′/h̄ dx ′, (2.1a)
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Wn(p, x) = 1

2πh̄

∫ ∞

−∞
ψ̃∗

n

(
p − 1

2
p′

)
ψ̃n

(
p +

1

2
p′

)
eixp′/h̄ dp′. (2.1b)

It allows one to calculate the quantum average of a physical quantity f by the formula

f̄ n =
∫ ∞

−∞

∫ ∞

−∞
f (p, x)Wn(p, x) dp dx, (2.2)

where f (p, x) is the Weyl symbol of the operator f̂ (p̂, x̂) [19].
The following explicit expression of the Wigner function for the stationary states of the

non-relativistic linear harmonic oscillator is well known [19, 20]:

WHO
n (p, x) = (−1)n

πh̄
exp

[
− 2

h̄ω

(
p2

2m
+

mω2x2

2

)]
· Ln

(
4

h̄ω

(
p2

2m
+

mω2x2

2

))
, (2.3)

where Ln are the Laguerre polynomials ([21] section 1.11).
The Wigner distribution function determined in such a way takes both negative and

positive values, therefore it is only a quasiprobability distribution function of p and x. It is
bounded by the restriction |Wn(p, x)| � (πh̄)−1 [22]. For this reason, a class of Gaussian
smoothed distribution functions with nonnegative behaviour was introduced [23–25]:

Wn (p, x) = 1

πh̄

∫ ∞

−∞

∫ ∞

−∞
exp

(
− p′2

2�2
p

− x ′2

2�2
x

)
· Wn(p + p′, x + x ′) dp′ dx ′ � 0, (2.4)

where �p�x is a finite region of the phase plane. The simplest form of the Gauss smoothed
Wigner function is when �p�x = h̄/2, where (2.4) will be a so-called Husimi distribution
function [26]:

Wn(p, x) = 1

(2π)3/2h̄�x

∣∣∣∣
∫ ∞

−∞
ψn(x

′) · exp

[
− ipx ′

h̄
− (x − x ′)2

4�2
x

]
dx ′

∣∣∣∣
2

. (2.5)

Equation (2.5) has the property that Wn (p, x) is restricted by the condition 0 �
Wn (p, x) � (πh̄)−1.

The calculation of the distribution function of the non-relativistic harmonic oscillator with
this formula, when the parameter �2

x is taken equal to h̄/2mω (simplest case), leads to the
expression [19]

W
HO
n (p, x) = (2πh̄n!)−1

[
1

h̄ω

(
p2

2m
+

mω2x2

2

)]n

· exp

[
− 1

h̄ω

(
p2

2m
+

mω2x2

2

)]
. (2.6)

3. The q-deformed harmonic oscillator model

The q-deformed harmonic oscillator model considered in this paper was already developed in
a number of papers [27–35]. It has the following creation and annihilation operators:

b± = ± i√
1 − q

e∓λx2

(
exp (∓2iλhx) − q1/2 exp

(
− ih

2
∂x

))
e±λx2

, (3.1)

with λ = mω
2h̄ . Herein, h is a deformation parameter related to a finite-difference method with

respect to x and

q = e−λh2
.

In the rest of this paper, q will always have the value e−λh2
.
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Note that an operator of the form exp(a∂x), where a is an arbitrary complex number, acts
as follows on functions of x:

exp(a∂x)f (x) = f (x + a).

In the limit h → 0 (or q → 1), the operators (3.1) reduce to the well-known non-
relativistic harmonic oscillator creation and annihilation operators [34]:

lim
h→0

b± = a± = ∓ 1

2
√

λ
e±λx2 ∂

∂x
e∓λx2

.

It is easily verified that

[b−, b+]q = b−b+ − qb+b− = 1.

The Hamiltonian operator H of the model is then

H = h̄ω
(√

qb+b− +
[

1
2

]
q

)
.

The wavefunctions for this model in the x-representation [36] are related to the Rogers–
Szegö polynomials Hn(x|q) ([37], chapter 17). More in particular, one has

ψqHO
n (x) = cnHn(−e−2iλhx |q) e−λx2

, (3.2)

where the normalization constant cn is given by

cn =
(

2λ

π

)1/4

(−i)nqn/2(q; q)−1/2
n .

One can see that in the limit for h → 0 one recovers the wavefunctions for the non-
relativistic quantum mechanical harmonic oscillator in the x-representation:

ψqHO
n (x)

h→0→ ψHO
n (x) = 1√

2nn!
√

π/2λ
Hn(

√
2λx) · e−λx2

. (3.3)

The above limit can be verified by employing the following known limit relation between
the Rogers–Szegö and Hermite polynomials [34, 36]:

lim
α

>→0

(
−i

√
2q̃

1 − q̃

)n

Hn(−e−2iαy |q̃) = Hn(y), q̃ = e−2α2
, α > 0. (3.4)

The wavefunctions in the momentum and space representations are related through a
Fourier transform:

ψ̃qHO
n (p) = 1√

2πh̄

∫ ∞

−∞
ψqHO

n (x) exp
(
− ixp

h̄

)
dx.

Those in the p-representation are expressed through the Stieltjes–Wigert polynomials
Sn (x; q):

ψ̃qHO
n (p) = cn(q; q)n√

2λh̄
Sn

(
q−1/2 exp

(
−hp

h̄

)
; q

)
exp

(
− p2

4λh̄2

)
, (3.5)

where we have used the notation and normalization of ([21], section 3.27) for the Stieltjes–
Wigert polynomials Sn (x; q).

Also here, one recovers the correct expression of the wavefunctions for the non-relativistic
quantum mechanical harmonic oscillator in the p-representation when h → 0:

ψ̃qHO
n (p)

h→0→ ψ̃HO
n (p) = (−i)n√

2nn!
√

π · mωh̄
Hn(p/

√
mωh̄) · exp

(
− p2

2mωh̄

)
, (3.6)
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which follows from the limit relation between the Stieltjes–Wigert and Hermite polynomials
[34, 36]:

lim
>

α→0

(
2q̃

1 − q̃

)n/2

(q̃; q̃)nSn(q̃
−1/2 e−2αy; q̃) = Hn(y), q̃ = e−2α2

, α > 0. (3.7)

Thanks to the orthogonality relations for the Rogers–Szegö and Stieltjes–Wigert
polynomials on the real axis [36],

1√
π

∫ ∞

−∞
Hn(−e−2iαy |q̃) · Hm(−e2iαy |q̃) · e−y2

dy = (q̃; q̃)n

q̃n
δnm, (3.8)

1√
π

∫ ∞

−∞
Sn(q̃

−1/2 e−2αy; q̃) · Sm(q̃−1/2 e−2αy; q̃) · e−y2
dy = 1

(q̃; q̃)nq̃n
δnm, (3.9)

both wavefunctions (3.2) and (3.5) are also orthonormal:∫ ∞

−∞
ψ∗

n
qHO(x)ψqHO

m (x) dx = δnm,

∫ ∞

−∞
ψ̃

∗
n

qHO(p)ψ̃qHO
m (p) dp = δnm. (3.10)

Finally, let us mention that the spectrum of the Hamiltonian H is given by

En,q = h̄ω

[
n +

1

2

]
q

, with n = 0, 1, 2, . . . .

4. Computation of distribution functions

4.1. The Wigner distribution function for stationary states

The Wigner function for stationary states of the q-oscillator can be computed using (2.1a) and
(3.2) or (2.1b) and (3.5). Substitution of (3.2) into (2.1a) leads to the following integral:

Wn,q(p, x) = |cn|2
2πh̄

∫ ∞

−∞
Hn(− exp(iλh(2x − x ′))|q)Hn(− exp(−iλh(2x + x ′))|q)

× exp

(
−λ

(
x − x ′

2

)2

− λ

(
x +

x ′

2

)2
)

exp (−ipx ′/h̄) dx ′. (4.1)

Here, the Rogers–Szegö polynomials have the following explicit expression:

Hn(x|q̃) =
n∑

k=0

[
n

k

]
q̃

(
x

q̃1/2

)k

, with 0 < q̃ < 1. (4.2)

Using this expression, one writes the Wigner function (4.1) explicitly as

Wn,q(p, x) = 1

2πh̄
|cn|2

n∑
k,s=0

(−1)k+sq−(k+s)/2

[
n

k

]
q

[
n

s

]
q

×
∫ ∞

−∞
exp

(
−λ

(
x − x ′

2

)2

− λ

(
x +

x ′

2

)2
)

× exp

(
2iλh

(
x − x ′

2

)
k

)
exp

(
−2iλh

(
x +

x ′

2

)
s

)
exp (−ipx ′/h̄) dx ′.

Next, we use the Gaussian integral:∫ ∞

−∞
exp (−(a2x

2 + a1x + a0)) dx =
√

π

a2
exp

(−a0 + a2
1

/
4a2

)
, when

a2 > 0 and a1, a0 ∈ C. (4.3)
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After some trivial simplifications, one then finds the following double sum expression for the
Wigner distribution function:

Wn,q(p, x) = 1

πh̄

qn

(q; q)n
exp (−2λx2 − p2/2λh̄2)

×
n∑

k,s=0

(−1)k+s

[
n

k

]
q

[
n

s

]
q

q(k

2)+(s

2)+ks e−ka∗−sa, (4.4)

with

a = hp

h̄
+ 2iλhx. (4.5)

This expression can be further reduced to a single sum by applying the q-binomial theorem
once. Indeed, we have

Wn,q(p, x) = 1

πh̄

qn

(q; q)n
exp

(
− 2

h̄ω

(
p2

2m
+

mω2x2

2

)) n∑
s=0

(−1)s
[
n

s

]
q

q(s

2) e−sa

× 1ϕ0

(
q−n

–
; q, qs+n e−a∗

)

= 1

πh̄

qn

(q; q)n
exp

(
− 2

h̄ω

(
p2

2m
+

mω2x2

2

)) n∑
s=0

(−1)s
[
n

s

]
q

q(s

2)e−sa(qse−a∗ ; q)n

= 1

πh̄

qn

(q; q)n
exp

(
− 2

h̄ω

(
p2

2m
+

mω2x2

2

))
(e−a∗ ; q)n

× 2ϕ1

(
q−n, qn e−a∗

e−a∗ ; q, qn e−a

)
.

Applying now the following transformation formula ([17], III.7)

2ϕ1

(
q̃−n, b

c
; q̃, z

)
= (c/b; q̃)n

(c; q̃)n
3ϕ2

(
q̃−n, b, bzq̃−n/c

bq̃1−n/c, 0
; q̃, q̃

)
,

leads to the following expression:

Wn,q(p, x) = (−1)n

πh̄
q−(n

2) exp

(
− 2

h̄ω

(
p2

2m
+

mω2x2

2

))
3ϕ2

(
q−n, qn e−a, qn e−a∗

q, 0
; q, q

)
.

(4.6)

Using the classical definition of the Al-Salam-Chihara polynomials ([21], section 3.8)

Qn (y;α, β |q̃ ) = (αβ; q̃)n

αn 3ϕ2

(
q̃−n, α eiθ , α e−iθ

αβ, 0
; q̃, q̃

)
, y = cos θ,

the Wigner function (4.6) can formally be written as

Wn,q(p, x) = (−1)n

πh̄

qn(n+1)/2

(q; q)n
· exp

(
−n

h

h̄
p

)
· exp

(
− 2

h̄ω

(
p2

2m
+

mω2x2

2

))

×Qn

(
cos 2λhx; qn exp

(
−h

h̄
p

)
, q1−n exp

(
h

h̄
p

) ∣∣∣∣q
)

. (4.7)

Quite generally, Wigner functions for stationary states satisfy the following relation [18]:∫ ∞

−∞

∫ ∞

−∞
Wn,q (p, x) · Wm,q (p, x) dx dp = δnm

2πh̄
. (4.8)
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To prove this relation in the current case, one can use the double sum expression of
the Wigner function (4.4). After simple calculations, using the Gaussian integral (4.3), the
computation reduces to checking that

qn+m

(q; q)n(q; q)m

n∑
k=0

(qn)k
(q−n; q)k

(q; q)k
(q−k; q)m ·

m∑
k′=0

(qm)k
′ (q−m; q)k′

(q; q)k′
(q−k′ ; q)n = δnm. (4.9)

This is now readily verified since, on the left-hand side, all terms except the one with
k = k′ = m = n are zero.

From the 3ϕ2 expression (4.6) for the Wigner distribution function, it is easy to verify that
in the limit for h

>→ 0 one recovers the Wigner distribution function for the non-relativistic
quantum harmonic oscillator.

First, using series expansion in h one easily sees that

lim
>

h→0

(qne−a; q)k(q
ne−a∗ ; q)k

(q; q)k
=

k−1∏
j=0

lim
>

h→0

(1 − qn+j e−a)(1 − qn+j e−a∗
)

1 − qj+1

=
k−1∏
j=0

lim
>

h→0

(
4

h̄ω

(
p2

2m
+ mω2x2

2

)
j + 1

+ O(h)

)
=

(
4

h̄ω

)k( p2

2m
+ mω2x2

2

)k

k!
.

Secondly, using a termwise limit for the 3ϕ2-series, one finds that

lim
>

h→0

Wn,q(p, x) = (−1)n

πh̄
exp

(
− 2

h̄ω

(
p2

2m
+

mω2x2

2

))

×
n∑

k=0

lim
>

h→0

(q−n; q)k

(q; q)k

(qn exp (−a); q)k(q
n exp (−a∗); q)k

(q; q)k
qk

= (−1)n

πh̄
exp

(
− 2

h̄ω

(
p2

2m
+

mω2x2

2

)) n∑
k=0

(−n)k

k!

(
4

h̄ω

)k( p2

2m
+ mω2x2

2

)k

k!

= (−1)n

πh̄
exp

(
− 2

h̄ω

(
p2

2m
+

mω2x2

2

))
Ln

(
4

h̄ω

(
p2

2m
+

mω2x2

2

))
= WHO

n (p, x).

4.2. The Husimi distribution function

The calculation of the Husimi distribution function (2.5) follows more or less the same lines
as that of the calculation of the Wigner distribution function.

First, one computes∫ ∞

−∞
ψn(x

′) exp
(−ipx ′/h̄ − (x − x ′)2

/
4�2

x

)
dx ′ (4.10)

using expressions (3.2), (4.2) and the Gaussian integral (4.3). Then, one can apply the
q-binomial theorem. Secondly, one conjugates this expression and multiplies both expressions,
taking into account the constant factor in (2.5). Finally, one arrives at

Wn,q(p, x) = 1

2πh̄
qn (e−a/2; q)n(e−a∗/2; q)n

(q; q)n
exp

(
− 1

h̄ω

(
p2

2m
+

mω2x2

2

))
, (4.11)

with a given by (4.5).
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Using the same kind of limit calculation as before, one sees that the limit h
>→ 0 (or

q
<→ 1) yields

lim
h

>→0

Wn,q(p, x) = 1

2πh̄n!

[
1

h̄ω

(
p2

2m
+

mω2x2

2

)]n

exp

(
− 1

h̄ω

(
p2

2m
+

mω2x2

2

))
,

which is indeed the correct expression for the Husimi distribution function (2.6).

5. Discussions

The explicit expressions obtained for the Wigner and Husimi distribution functions for the
q-deformed harmonic oscillator allow us to explore in detail the behaviour of these distribution
functions in the phase space as q varies. First, an analysis of the ground state (n = 0,
vacuum state) shows that the behaviour of the non-relativistic harmonic oscillator and its
q-generalization in the phase space is the same. In other words, there is no impact of the
parameter q in the absence of photons, and the Wigner function of the ground state for the
q-deformed oscillator is the well-known Gaussian centred at the phase space point (0, 0).

For the excited quantum states the situation is rather different. In figures 1 and 2, we have
given a density plot for the single (n = 1) and double (n = 2) photon states of the q-deformed
harmonic oscillator in the phase space. For simplicity, we use the scale m = ω = h̄ = 1.
The first plot in each of the figures is the Wigner function for the non-relativistic quantum
harmonic oscillator (h = 0 or q = 1). As long as h � 1 we find a phase space that is not
so different from that of the non-relativistic harmonic oscillator, except for the occurrence of
a new peak at the point x = 0 and p < 0. This value h = 1 is important, because most
of the investigations of finite-difference generalizations of the Schrödinger equation propose
to take a finite-difference step h to be equal toλ̄ = h̄/mc, i.e. the Compton wavelength of a
particle with mass m (see, for example, [28, 38, 39]). In this case (h = 1) one has h̄ω = mc2.
After this point, as h increases (h > 1) or q decreases, one can see a significant impact of the
parameter on the behaviour of the q-deformed oscillator in the phase space. First, one can see
a displacement of the probability function peak towards negative values of the momentum.
This can be understood by computing the mean values of the q-oscillator position and
momentum.

The mean value of the oscillator position in stationary states requires the computation of
the following integral:

x̄ =
∫ ∞

−∞

∫ ∞

−∞
xWn,q (p, x) dx dp. (5.1)

Using the double sum expression of the Wigner function (4.4), one can see that the
integrand is an odd function with respect to x, and therefore (5.1) is zero.

The mean value of the momentum for stationary states is given by a similar expression:

p̄ =
∫ ∞

−∞

∫ ∞

−∞
pWn,q (p, x) dx dp. (5.2)

Again, one can use the double sum expression of the Wigner function (4.4) to compute
this integral, leading to

p̄ = −nmωh. (5.3)

So, the average of the momentum depends on the number of photons and on the finite-
difference step h. This is the reason for the displacement of the probability function towards
negative values of the momentum.
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Figure 1. A density plot of the Wigner function of the single photon state for the q-deformed
harmonic oscillator, for values of h = 0, 0.6, 1, 1.6, 2.3, 15 (q = 1, 0.84, 0.61, 0.28, 0.07, 10−49)

and m = ω = h̄ = 1. The function changes dramatically when the value of the parameter q
decreases. Observe also a displacement of the Wigner function due to the non-zero average of the
q-oscillator momentum.

The last plots in figures 1 and 2 show a similar picture. In other words, the limit q → 0
dramatically changes the behaviour of the Wigner function. The probability distribution
function has apparently the form of a Gaussian, and its value does not seem to depend on the
photon number n, only its displacement in phase space depends on n. This can be understood
analytically by computing the limit h → +∞ (corresponding to q → 0). In fact, for n > 0
and for fixed finite values of x and p one finds

lim
h→+∞

Wn,q(p, x) = 0; (5.4)
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Figure 2. A density plot of the Wigner function of the double photon state for the q-deformed
harmonic oscillator, for values of h = 0, 0.6, 1, 1.6, 2.3, 15 (q = 1, 0.84, 0.61, 0.28, 0.07, 10−49)

and m = ω = h̄ = 1. The function again changes dramatically when the value of the parameter q
decreases. The displacement of the Wigner function due to the non-zero average of the q-oscillator
momentum is clear, and one can also see the impact of the momentum average dependence on n.

on the other hand, for every q (or h)∫ ∞

−∞

∫ ∞

−∞
Wn,q(p, x) dx dp = 1. (5.5)

These relations indicate that limh→+∞ Wn,q(p, x), for n > 0, actually behaves as Gaussian
distribution function with the peak displaced towards (−∞, 0) in the (p, x)-plane.

In figures 3 and 4, we also present plots of the Husimi distribution function for the
q-deformed harmonic oscillator, for n = 1 and n = 2. The behaviour of the plots in this
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Figure 3. A density plot of the Husimi function of the single photon state for the q-deformed
harmonic oscillator, for values of h = 0, 0.6, 1, 1.6, 2.3, 15 (q = 1, 0.84, 0.61, 0.28, 0.07, 10−49)

and m = ω = h̄ = 1. The behaviour is similar to that of the Wigner function.

case is the same as for the Wigner distribution functions. Comparing the behaviour of the
Wigner and Husimi distributions for small q-values (0 < q � 1) indicates that both of them
are good approximations of a displaced vacuum state, but the Wigner function is defined more
sharply than the Husimi function, allowing a more correct determination of the phase space
probabilities of the quantum system under consideration. In fact, for the Husimi function one
can verify that for large h-values, (4.11) is approximated by

Wn,q(p, x) ≈ 1

2πh̄
exp

(
− (p + nmh̄ω)2

2mh̄ω
− mωx2

2h̄

)
.
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Figure 4. A density plot of the Husimi function of the double photon state for the q-deformed
harmonic oscillator, for values of h = 0, 0.6, 1, 1.6, 2.3, 15 (q = 1, 0.84, 0.61, 0.28, 0.07, 10−49)

and m = ω = h̄ = 1.

In a similar way, one can compute an approximation of the Wigner distribution function for
large h-values from (4.6):

Wn,q(p, x) ≈ 1

πh̄
exp

(
− (p + nmh̄ω)2

mh̄ω
− mωx2

h̄

)
.

These expressions confirm the observed behaviour of the distribution functions as a displaced
Gaussian when h is large (or when q is close to 0).
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6. Conclusions

In recent years, one has seen an increased interest in the study of quantum systems in phase
space, both analytically and experimentally. For example, nowadays the development of
measurement technologies allows the construction of experimental setups to recover the
Wigner distribution function of certain Fock states. The use of analytical expressions for
the Wigner function allows for a more detailed study of quantum entanglement.

We have constructed the Wigner and Husimi distribution functions for the q-deformed
linear harmonic oscillator, whose wavefunctions of the stationary states are expressed by
means of Rogers–Szegö and Stieltjes–Wigert polynomials in the position and momentum
representations. The analytical expression of the Wigner distribution function for the stationary
states can formally be expressed by means of an Al-Salam-Chihara polynomial. The Husimi
distribution function for the stationary states is simpler and is expressed by means of q-shifted
factorials. Using proper limits for basic hypergeometric series we have shown that the Wigner
and Husimi functions of the stationary states reduce to those for the non-relativistic quantum
harmonic oscillator, when q → 1.

Examination of both distribution functions in the q-model shows that, when q tends to 0,
their behaviour in phase space is similar to the ground state of an ordinary quantum oscillator,
but with a displacement of momentum towards negative values. We have computed the mean
values of the position and momentum for the Wigner function and, unlike the ordinary case,
the mean values of the momentum are not zero but depend on q and n. The ground-state-
like behaviour of the distribution functions for excited states in the q-case opens up new
perspectives for further experimental measurements of quantum systems in the phase space.
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